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FINITE-ELEMENT ANALYSIS OF LAMINATED

BIMODULUS COMPOSITE-MATERIAL PLATES

J.N. REDDY and W.C. CHAO

School of Aerospace , Mechanical and Nuclear Engineering
The University of Oklahoma , Norman , OK 73019

Abstract - Finite element analysis of the equations governing the small -

deflecti on elasti c behavior of thin plates l ami nated of anisotropic bi-

modulus materials (which have different elastic stiffnesses depending

upon the sign of the fiber-direction strain) is presented . Single-layer

and two—layer cross—ply, simply-supported rectangular plates subjected to

• sinusoidally distributed norma l pressure and uniformly distributed normal

pressure are analyzed . For the sinusoidally loaded case , the finite ele-

ment solutions are grati fyingly close to the exact closed-form solutions .

NOMENCLATURE

~~ 
= stretching stiffness

a,b = dimensions of plate in x and y directions

~~ 
= bending-stretching sti ffness

C = a/b

D~ 
= bending stiffness

E~1,E~1,etc . = respective compressive and tensile Young ’ s modu li for
orthotropic bimodu lus material (without subscripts for
isotropic bimodu lus material)

= finite-e lement force components
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G~2,G~2,etc . = shear moduli for orthotropic bimodulus ma terial

h = total thickness of plate

K = E~2Wh~/qa~
= sti ffness coefficients in the finite—ele ment formulation

M1~
N
~ 

= stress couples and stress resultants (i=l ,2,6)

= plane-stress-reduced stiffr iesses for orthotropic ma terial

q = q~oiiiial pressure

maximum normal pressure

R midsurface of the plate

S~ finite—e lement matrix coefficients

u,v ,w = displacements in x ,y,z directions

x ,y,z plate coordinates in longitud inal , transverse, and downward
thickness directions

Z< ,Z~ Znx /h i Zny/h

z ,z neutral-surface posit ions assoc iated wi th  = 0 an d = 0nx ny x y

= penalty parameters

fiber- ~i rection strain in z—th layer

= strain component at arb i trary location (x , i ,z),(~~~,2,6)

finite-element interpolat ion functions

stress component (~=l ,2,6)

= prin cip al Poisson ’ s ratios for orthotropic bimo dulu s material

= angle betweei fiber directio n and plate reference ~i rection
(x axis)

slopes , ~w ,  ~x, ~~~~ (and slope functions in the YNS theory )

INTROCUCT:ON

~iber- reinforce d conipos~~e mater ia ls  are f inding wid espread ~se in

man~ eng ’nee ’ ’ng s:r~ctur~s. i s  i s Dr iar1 ’j~~ue to tne’ r n;n s~~f fn es s—
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to-weight ratio , and anisotropic material properties that can be tailored

through variati on of the fiber orientati on and stacking sequence. Material

characteri zation of composite material s has shown that certain composite

materials, known as bimodulus materials , behave di fferently in simple tension

and compression under static loading [1]. The analysis of bimodul us mater-

ials is more difficul t than that of ordi nary materials (i.e., materials whose

elasti c moduli are the same in tension and compression) since the elasti c

moduli depend on the sign of the stress, which is unknown a—priori . A plate

bent by transverse load experiences both tension and compression , and there-

fore the analysis of plates made of bimodul us material becomes more difficult.

The first material model appropriate for birnodulus materials is appar-

ently due to Ambartsumyan and Khachatryan [2,3]. There have been only a small

number of bimodulus material appl i cations to structural plate problems (see

[4-11]). All of these analyses were limi ted to isotropic materials wi th

different properties in tension and compression . Ambartsumyan [3] and Tabaddor

[9] proposed linearized material models for bimodulus anisotropic materials ,

whil a Jones and Morgan [10] presented a closed-form solution for cylindrical

bending of a thin , cross-ply laminate . More recently, Bert [11] presented

a macroscopic material model for bimodulus fiber-reinforced compos i tes. This

model was found to agree wel l wi th experimental results . A sumary of vari ous

bimodulus material models can be found in the survey paper of Bert [12].

Using the material model of Bert [11], closed-fo rm solutions have been devel-

oped for clamped elliptic plates under unifo rm loading and simply-supported

rectangular plates under sinusoidal loading [13]. 

~~~~~~~
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The present paper is concerned with the finite—element analysis of

thin elastic plates laminated of anisotropic bimodulus materials described

by the model of [ii]. Numerical results are presented for single—laye r

and two-layer cross-ply, simply-supported rectangular plates under both

sinusoida l loading and unifo rm loading. Only in the case of sinusoidal

loading does a closed—form solution exist [13] for rectangular plates . In

this case,the present finite—element solution closely agrees with the exact

closed-form soluti on . Apparently, the present investigation is the first

to consider the finite-element analysis of anisotropic bimodulus plates

of finite dimensions .

2. THEORY AND FORMULATION

Consider a plate of constant thickness h composed of thin anisotropic

l ayers oriented , generally speaking, at angles e 1,02.... The origin of the

coordinate system is located within the middle plane (x,y) with the z-axis

being normal to the midplane . The material of each layer is assumed to

possess a plane of elasti c symetry parallel to the xy-plane . The thin-

plate equilibrium equations , in the absence of body forces and body moments ,

are

3N 1 ~N 6 3N 6 aN2_ + _ _ ~~= O  — +— = 0ax ay ‘ ax ay
(2. 1)

3 2M 6 a 2M2
+ 2 + ~~

-
~~~

-— = q

where
rh /2 th/2

(N 1,N2,N6 ) = j (~ 1,~2,~6)dz , (M 1,M2 ,M6 )  = j (~ 1,c~-, ,o 6 ) z  dz (2.2 )
-h/2 — h/2



— .

All of the symbols have the usua l meaning and are defined i n  the Nomenclature.

In the thin—plate theory (Ki rchhoff hypothesis), the strain—displac e-

ment relations are given by

~~i ~~~~~~~
- Z~~~

-
~~ ‘ 

£~~ =
~:t~

•- Z j ~~ ‘ ~6 = } Y ~+~~ . _  Z (j~~~4~~-~~~) (2.3)

where 8x and ey are the slopes ,

- = 0 ey - = 0 (2.4)

Equations (2.l)-(2.4) are valid for both ordinary and bimodulus mat-

• erials. What distinguishes a bimodulus material from an ordinary material

are the constitutive relations. Following Bert ’s [11] fiber-governed macro-

scopic material model , we assume that there are two symmetr ic plane—stress

reduced stiffness matrices : one when the fibers are in tension along their

length and another when they are in compression in the same direction. Then

the stress-strain relation for a thin orthotropic bimodulus mate rial may be

written as

~~~~~ ~12 k2. 0 Cl

a2 = 

~12k~ ~22k~ 
0 £ 2 (2.5)

0 0 
~66k 2. £6

where denote the plane-stress-reduced stiffnesses for ~-th aniso—

tropic l ayer in tension (k=l) or compression (k=2):

a If 4 > 0

~
ijkL = (2.6)

1 <

_ _ _  ~~~~~~~~~~~~~~~~~~~~~ •. ~~~~~~~~~~~~~~~~~~~~~~~~~~
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where denotes the fiber-direction strain at any arbitrary point in l ayer,

9. .

The stretching , bending-stretching coupling, and bending stiffnesses of

the bimodulus lami nate are defined exactly in the same way as in the case of an

ordinary laminate ,

N z Z~~~1

~~~~~~~~~ = 

z=l ‘Z 
Q~~19.(l~z~z2)dz + Q . .~ (l,z ,z2)dz} (2 .7)

where Z
n 

is the distance from the midsurface to the neutra l plane (which is

unknown a-priori ). Note that , in addition to performing the integrations

in a piecewis e manner from layer to l ayer , one must take into account the

possibility of different properties (tension or compression) within a layer.

For exampl e , in the two-layer , cross-ply case , the coefficients A.. are

given by
Z~ , 0 Znx h/2

~~ = 
1 -h/2 

Q . .  dz + Q 1~ 12 
dz + f 

~~~~~~ 
dz + Q~~11 

dz (2.8)

wherein it is assumed that layer , 9. = 1 (bottom) occupies the thickness

space from z = 0 to z h/2 and layer , ~ = 2 (top) occupies the thick-

ness space from z = -h/2 to z = 0 (z is measured positive downward from the

midplane). In writing eqns. (2.8) it is assumed that the upper portion of

the top l ayer (t=2) is in compression (k=2) in the fiber direction and that

the lower portion of the top layer is in tension (k=l), while the portion

Z 0 to Z Z nx of the bottom l ayer (z l) is in compression and the por-

tion 2 = Znx to z = h/2 is in tension . Here z,,~ and Zny denote neutra l-
surface positions associated with = 0 and = 0, respectively.

• ~~~~-— ~~~~~~~~~~~
-.-

~~~~~~~~~~~~~~~~~~~~~~~
-

~~~~~
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Now the laminate constitutive relations for an arbitrary laminate of

anisotropic material are (using eqns. (2.2), and (2.5)),

N 1 A 11

N2 A 12 A22 V~y
N6 A 16 A26 A66 symmetric U , +

= (2. 9)
• M 1 B 11 B12 B16 ou — 9x ,x

M2 B 12 B22 B26 012 D22 — 0
5
’ 

y,y
M6 B16 826 B56 016 026 066 — (e + 0x ,y y,x

Substituting eqns . (2.9) into eqns . (2.1), one obtains the governing~

equations in terms of the displacements . For the finite-element formulation ,

we construct the associated functional . The problem of seeking solutions

to eqns . (2.7) and (2.9) is equivalent to minimizing the total potential

energy ,

i~ (u ,v ,w,e ,e ) = J a . c. dxdy dz + qw dxdy (2.10)x 
~
‘ 

~—h/2 R
1 1

subject to the contraints in eqn. (2.4). Note that if and 9 .~ are

eliminated from eqn. (2.10) using relations (2.4), the resulting total

potential energy functional involves the second—order derivatives of the

transverse deflection , and consequently imposes severe continuity require-

ments on the finite-element interpolation functions .

To include the constraint conditions into the variational ormulation ,

we use the penalty -function method (see Reddy [14]). In the penalty method ,

a constrained minimization problem is replaced by an unconstrain ed minim j-

zation problem whose solution converges to the true solution in the limi t

certain parameter , called the penalty parameter, approaches the value of
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infinity . For details , the reader is referred to the sen i or author ’ s recent paper

[l4j.

The modifi ed functional to be minimized is given by

~~~~~~~~~~~~ 
= 1r (U

~
V
~
W I 0X~

0
Y
) + J[~1 

(
~~

. - e
~
) + 

~~ 
(
~~ 

- e~,)]
2 

dxdy (2.11)

where 
~ 

and 
~ 

are the pena l ty parameters whose values are to be preassigned

(of the order 1012 - 1015). Generally speaking, the penalty functional

approaches as 
~ 

and c~2 approach =‘~ and for finite values of 
~ 

and

has no phys i cal significance. However , in the case of plates , has a

physical significance (only incidental): for the following valu es of 
~ 

and

~2’ ~ corresponds to the functional associated with the Yang, Norris , and

Stavsky theory (a generalization of Min dl fn ’ s theory for isotropic plates to

• laminated anisotr opic plates) [14]:

h/2 h/2 ~h/2k~ 
~-h/2 

Q55 dz , c~ 
z k~ J~h/2 

Q~~dz ~~1~ 2 k 1 k2~ Q~5dz (2.12)

where k 1 and k2 are the shear correction factors , and and are the

slo pe functions of the thick—plate theory (not equal to the slopes of w).

Thus (in retrospect only) the Mi n d l in thick —plate theory can be interpreted

as a theory obtained from the thin-plate theory by perturbation; for suffi-

ciently large ~‘s one recovers the thin—plate theory from the thick—plate

theory . 
•

3. FINITE-ELEMENT MODELS

We now construct a finite—eleme nt model based on 
~~~~~~~~~~~~~

~Ie assume , over each elemen t Re~ 
the same kind of interpolation for all of

the variables ,

_ _ _ •_ _ _ •

~

__ _ ___&______
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= , = ~ v~ p~ , etc . (n  = nodes per element) (3.1)

where are the element interpolation (or shape) functions, and u?, and

v~ are the noda l values of ue and ~
e , respectively. Substituting (3.1)

into the fi rst variation of -r~~ ~~~~~~~~~~~ 
and co l lect i ng the coeff i-

cients of the variations , 5u 1, ~~~ etc ., we obtain

[Ke J{~
e } ~F~} (3. 2 )

w here ~~~ = ~{U
e} ~v

9} fW e} ~9~ } ~9
e~.}T and the elements (c~,~=l ,2,

...,5; i ,jl ,2,... ,n) of the stiffness matrix are given by

K~ = A 1 1 S~~ + A 16 (S~~ + S~~) +

K~ = A 12 S~~ + A 15 S~~ + A~6 S~~ + 155 S~

K~ = B 11 S~~ + 3~- ~~~ 
+ S~~) + B~~ S~ .

KU = B 12 S
xy 

+ B 16 S~~ + B25 S~~ + B56 S~~

K~~ = A 26 (S~~ + s~’) + A22 S~~ + A 56 S~~

= B 15 S~~ + B56 S~~ + B 11 S~~ + B
~s ~~

= B 25 (S~~ + S~~) + B56 S~~ + 822 S~
’
~

K~ = c~~ S~ + ~~ S~ + 
~~~~~ 

(S~~ + S~~)

K~ ~~~ S~~~+ - ~1~ S~ , ~~ ~~~~~~~~~ S~~~~Zt~ S~

= D1~S~~ + D16(S~ + S~
’) + D56 S~ + ~~ S~

+ ~~~~~ + D1s S~~ + + 
~~~ 

s?~
= 0 2 5 ( S~~ + S~~) ~~~~ D~Z S~J 

+ :&~~
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= K~ 0 , S~ = I ~~~
. .~~~~. dxdy , (~ ,r,0 ,x ,y)

13 13 13 j~e 1 ,3 ,J,n

F~ = f e ~~~~j dxd~ ‘ 
F~~= F ~~~~F~~~~F~~= C

The elemen t s ti ffness matri ces are assem b le d i n the usua l manner , and

boundary conditions of the prob lem are imposed before solving for ~~}.

In the present study linea r (n 4) elements of the serendepity family

are used. The element stiffness matrices for the linear element are of

order 20x20 .

4. NUMERICAL RESULTS

in the following we present numerical results for (a) single— l ayer ,

isotropic and orthotropic bimodulus rectangular plates, and (b) two-layer ,

cross-ply (0°/90°), orthotropic bim odulus rectangular plates both wi th simply-

supported edge conditions. A mesh of Sx5 in the quarter plate is employed.

The side-to-thickness ratio is taken to be 100 . For simply-supported plates

under sinuso idal loading, the neutral surfaces are planes and closed-form

solu tions exist [13].

For single—layer , isotropic bimodulus rectangular plate , approximate

solu tion (Kamiya [7]), and closed- form solutions (Bert [13]) are available.

Table 4.1 presents a comparison of dimensionless maximum deflections obtained

by various methods for the case of sinusoidal loading. Dimensionless neutral-

surface pos iti on for the same case are compare d i n Ta b le L2. Numer i cal

results obtained by all of the methods are very close. Note that the loca-

tion of the neutral surface is independent of the plate aspect ratio.

L~L~ _ _  _— tMI L~~~~ ____
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Table 4.1. Comparison of dimens ionless maximum defl ections for
sinuso idally loaded , simply supported square plate
made of isotropic bimodulus materials (v C=O.2O , b/h 100)

Close~~form J~~ proximate I Finite-element solution

a/b Et/EC solution [13] [_solution _[7]j__________ (present work )

W = ~~~~~ E
Ch3/q0a

L
~ (x=0,y=0) U=U /W V =V /W

_____ ______ 
______________ _____________ __________ 

(y=0 ,x=a /2) (y=a/2 ,x~~j

0.5 0.007018 — 0.006966 0.5666 0.2832

0.5 1.0 0.004730 — 0.004697 0.0 0.0

2.0 0.003264 — 0.003243 0.6441 0.3219

0.5 0.04387 0.0435 0.04351 0.2833 0.2833

1.0 1.0 0.02956 — 0.02933 0.0 0.0

2.0 0.02040 0.0194 0.02024 0.3224 0.3224

0.5 0.11230 — 0.11139 0.141 7 0.2835

2.0 1 .0 0.07569 — 0.07508 0.0 0.0

2.0 0.05223 — 0.05182 0.1928 0.3226

Table 4.2. Values of the dimensionless neutral-surface position for the
isotropic bimodulus rectangular plate of Table 4.1 (b/h=lOO)

a/b = 0.5 a/b = 1.0 a/b = 2.0
~
t /E C r

Closed-form Present Closed-form Present Closed-form Present
solut ion [13] FEM solution [l3] FEM solution[l3] FEM

______ ______________ 

solut i on 
____________ 

solu tion 
____________ 

solu ti on
0.5 - 0.08951 - 0.08951 -0.08951 - 0.08951 -0.08951 - 0.08951

1 .0 0.0 0.0 0.0 0.0 0.0 0.0

2.0 0.10188 0.10189 0.10188 0.10189 0.10188 0.10189

—

~

—— — - • - -—— - ——

~

• --- -— • - —• • -•- - —.- -.~— 
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For the orthotro pi c b imodulus p la tes , the following elastic properties

(see Bert [13]) are used :

1 . Arami d-Rubber Tens i le Compress i ve
Properties Properties

Major Young ’s modulus (GPa) 3.5842 0.0120

Mi nor Youn g ’s modulus (GPa) 0.00909 0.0120

Major Po i sson ’s ratio 0.416 0.205

Shear modulus (GPa ) 0.0037 0.0037

2. Polyester-Rubber

Major Youn g ’s modulus (GPa) 0.617 0.0369

Mi nor Yo ung ’s modulus (GPa) 0.008 0.0106

Major Po i sson ’ s ratio 0.475 0.185

Shear modu lus (GPa) 0.00262 0.00267

Table 4.3 shows the closed-fo rm solutions [13] , and the finite—element

solu tions for dimensionless deflecticns and neutral-surface locations of

single-layer , simply-supported rectangular plate subjected to sinusoidal

loa ding. There is excellent agreement between the closed-form solutions

and the finite—element solutions.

Numer ical results are presented in Table 4.4 for two-layer , cross— ply

laminated plate (0°/90°) subjected to sinusoidal loading. Again , the closed-

form resul ts and the finite-element results are gratifyingly close for both

the deflections and neutral-surface locations (which are independent of x

and y) .

The example problems considered thus far admi t closed-form solutions

due to the fact that the neutral-surface locations are constant (i.e.,

independent of x and y) for the particular geometry , support conditions , and

loa ding considered . For the same geometry (i.e., rectangular) and boundary

•- -• --- -~~~~~~--— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



13

Table 4.3. Fiber-direction neutral-surface location and deflections
for simply-supported rectangular plate of single— l ayer (00)
aramid—rubber and polyester-rubber (b/h = 100 )

~ Aspect 
Zx = z

~~
/h = ~~~~~ E~2h3/q0b~ Fin ite-element solut ion

~ ratio, Closed—form Finite— Closed-form Finite- - -
.~~~ c=a/b solution [l3J element solution [13] element u=lO3 u /w v=lO 3v 1w

soluti on solution max max max max

0.5 0.4457 0.4454 0.001881 0.001875 0.2808 0.1306
0.6 0.4457 0.4451 0.003661 0.003640 0.2342 0.1093
0.7 0.4457 0.4447 0.006253 0.006211 0.2007 0.09171
0.8 0.4444 0.4440 0.009679 0.009605 0.1754 0.07738

.~~ 0.9 0.4444 0.4431 0.01387 0.01376 0.1556 0.06583
-Q

~ 1.0 0.4424 0.4420 0.01870 0.01854 0.1397 0.05647

~ 1 .2 0 .4398 0 .4393 0 .02956 0 .02928 0.1158 0.04270
~ 1 .4 0.4368 0.4363 0.04089 0.04049 0.09864 0.03337

1.6 0.4334 0.4328 0.05170 0.05120 0.08562 0.02686
1.8 0.4298 0.4292 0.06143 0.06085 0.07548- 0.02222

2.0 0.4260 0.4254 0.06995 0.06931 0.06732 0.01882

0.5 0.3040 0 .3041 0.000816 0.000821 0.1974 0 .08969
0.6 0 .3040 0.3041 0.001655 0 .001656 0.1588 • 0.07239
0.7 0.3040 0.3039 0.002975 0.002968 0.1364 0.06110

~ 0.8 0.3040 0.3036 0.004888 0.004866 0.1194 0.05206

~ 0.9 0 .3040 0.303 1 0.007478 0.007434 0 .1061 0 .04482

~ 1.0 0.3027 0.3026 0 .01079 0.01071 0.09548 0.03966

~ 1 .2 0.3014 0.3012 0.01954 0.01935 0.07930 0.03062

~~~ ‘ 1 .4 0.2998 0.2995 0.03056 0.03021 0 .06764 - 0.02495

~ 1 .6 0.2979 0.2976 0.04278 0.04224 0.05882 0.02102
1.8 0 .2958 0.2954 0.05505 0.05431 0.05192 0.01821
2 .0 0.2936 0.2931 0.06652 0.06560 L 0.04636 0.01616
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Table 4.4. Neutral-surface positions and defl ections for simply-
supported rectangular plates of cross-ply laminated aramid-
rubber and polyester- rubber (sinusoida l l oading case).

Z Z WE~2 h3/qb~
.~~~ Aspect X 

________ ____________ _________ ___________ _________

~ ratio c Closed—form Finite- Closed-form Finite- Closed—form Finite—
solution [l3] element solution [l3] element solution[l3] element

solution solution solution

0.5 0.4438 0.4390 - 0.07137 - 0.07202 0.001808 0.001801

0.6 0.4438 0.4419 - 0.06052 - 0.06208 0.003486 0.003464

0.7 0.4423 0.4419 - 0.05165 - 0.05302 0.005925 0.005880

• 0.8 0.4413 0.4413 - 0.04489 - 0.04608 0.009162 0.009082

• ~ 0.9 0.4401 0.4404 - 0.03964 - 0.04145 0.01 315 0.01303

1.0 0.4389 0.4392 - 0.03546 - 0 .03712 0.01780 0 .01761
~ 1.2 0.4362 0.4360 — 0.02925 - 0.03060 0.02838 0.02807

-• ~ 1 .4 0.4332 0.4334 - 0.02487 - 0 .02592 0.03961 0.03917
1.6 0.4300 0.4302 - 0.02163 - 0.02295 0.05046 0.04990

1.8 0.4265 0.4266 - 0.019-17 - 0.02029 0.06032 0.05967

2.0 0.4228 0.4229 - 0.01815 - 0.01818 0.06894 0.06826

0 .5 0.3650 0.3719 - 0.1412 - 0.1310 0.001902 0.001886
0.6 0.3650 0.3653 - 0.1244 - 0.1277 0.003672 0.003648

- 0.7 0.3638 0.3642 - 0.1139 - 0.1171 0.006227 0.006175

.~~~ 0.8 0.3638 0.3632 - 0.1060 - 0.1085 0.009542 0.009448

,~~ 0.9 0.3622 0.3626 - 0.1003 - 0.1039 0.01348 0.01333

~ 1. 0 0.3622 0 .3618 - 0.09605 - 0.09925 0.01783 0.01762

~ 1 . 2  0 . 3 5 9 4  0.3 6 0 3  - 0.09029 - 0.0941 5 0.02680 0.02646
1.4 0 .3573 0 .3583 - 0.08670 - 0 .08958 0.03497 0.03451
1.6 0.3550 0.3560 - 0 . 0 8 4 3 2  - 0.08628 O.04l’- 7 0.04112
1.8 0.3525 0.3541 - 0.08268 - 0.08070 0.04b~0 0 .04625L 2 . 0  0 . 3 4 9 8  0 . 3 5 41  - 0.08150 - 0.07757 0.05090 0.05021 

—-~~~— • •—— —
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conditions (i.e. , simply-su pported) , if the l oading is changed to teat of

uniform loadi ng , closed-form solution does not exist. However , the finite-

element method can predict the neutral—sur face locat ons (which may now

depend on x and y) and defl ections .

Table 4.5 shows the nondimens ional neutral-surface locations at the

center of the plate (i.e., in element 1), and deflections for the problem

of Table 4.4., but wi th uniform loading. The trend and magnitudes of the

solutions are simila r to those in Table 4.4 for the sinusoida l loading.

Table 4.6 shows the nondimensional neutral-surface locations for various

elements . It is clear that ~ does not vary much along x or y. However ,

z~, varies noticeably with y while it is almost constant with respect to x.

Also, the l ocations change wi th the plate aspect ratio.

As pointed out earlier, the present f4nite-element formulation is also

good for thick plates (i.e., accounts for transverse shear deformation).

Representative results are presented to show the effect of the th ickness

on the neutral—su rface locations and defl ections (see Reddy and Bert [15]).

Figure 4.1 shows the infl uence of the aspect ratio (b/a) and side-to-

thickness ratio (a/h) on the location of neutral surfaces for a single—l ay-

er , orthotropic , bimodulus , simply supported rectangular plate subjected

to sinusoida l loading. The following elastic properties are used :

E~ 1 = 3.584 GPa , E~1 = 1.792 GPa , E~2 = E~1 , E~2 = E?1

c c cG 12 — G12 — 1.27 Gra ‘p 12 = 
~ 21 = 0.4 

‘ ‘~l2 = “21 = 0.2

Note that for b/a = 1 , the neutral surfaces associated with x- and y-

directions coincide (i.e., Znx = 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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Table 4.5. Neutral-sur face locations and deflections for simply-
supported rectangular plates of cross-pl y l aminated
arami d-rubber and polyester-rubber (uniform-l oading case)

Mat- a/b Z Z x 10~ ~ x 102ertal x y

0.5 0.4439 - 0.1141 0.00269 2.8400 0.2744

0 . 6  0 .4 4 3 1  - 0.07943 0.00531 2.3721 0.2161

0 . 7  0 . 4 4 2 2  - 0 .06152 0 .00917 2 .0329 0 .1781
0.8 0.44 11 - 0.05067 0.01433 1.7788 0.1513

0.9 0.4400 - 0.04328 0.020 17 1 .5815 0 .1 314
1.0 0.4387 - 0 .03787 0 .02812 1 .4238 0 .1 16 1

1.2 0.4358 - 0.03037 0.04501 1.1884 0.0940
1.4 0.4323 - 0 .02 529 0 .06284 1 .022 0 .0785
1 . 6  0 . 4 2 8 1  - 0.02157 0.07989 0.8995 0.0671
1.8 0.4232 - 0.01890 0.09516 0.8066 0.0582
2.0 0.4174 - 0.01640 0.1082 0.7352 0.0509

0.5 0.3659 - 0.19040 0.00287 2.3433 0.5546
0.6 0.3648 - 0.14270 0.00568 1.9502 0.4555
0.7 0.3639 - 0.12160 0.00976 1.6709 0.3960
0.8 0.3631 - 0.10980 0.01507 1.4622 0.3583

0 . 9  - 0 . 3 6 2 2  - 0.10230 0.02137 1.3000 0.3330
1.0 0.3612 - 0.09714 0.02832 1.1724 0.3152
1 . 2  0 . 3 5 9 0  - 0.09046 0.04258 0.9818 0.2918
1 .4 0.3564 - 0.08648 0.05544 0.8495 0.2782

~ 1.6 0.3533 - 0.08390 0.06580 0.7543 0.2693

1 . 8  0 . 3 4 9 3  - 0.08182 0.07361 0.6844 ‘ 0.2624
2 .0 0.3445 - 0.08043 

j 
0.07927 0.6332 - 0 .2571

_ _
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Table 4.6. Neutral-surface locations as a function of the element
location for simply-supported rectangular plates of
cross-ply laminated aramid-rubber and polyester-
rubber (unifo rm—loading case)

Mat- Element a/ b = 0.5 a/b = 1 a/ b = 2.0

erial No. z x y x 
______________ 

x 
_____________

0.44397 - 0.11414 0.44002 - 0.043286 0.41739 - 0.016405

2 0.44398 - 0.11481 0.44013 - 0.043781 0.42006 - 0.017267

3 0.44401 - 0.11618 0.44033 - 0.044708 0.42421 - 0.018940

4 0.44405 - 0 .1 1792 0.44059 - 0.045820 0.4284 1 - 0 .021052
5 0.44407 - 0.11919 0.44079 - 0.046613 0.43094 I - 0.022623
6 0.44325 - 0 .08752 0.43947 - 0 .040654 0.41693 - 0 .016 184

11 0.44197 - 0.0597 1 0.43835 - 0.036348 0.416 1 2 - 0 .015769
16 G.4398~ - 0.04162 0.43686 - 0.031648 0.4523 - 0.015219

21 0.43796 - 0.0337~ 0.43572 - 0.028602 0.41463 - 0.014782 
-

1 0 .36597 - 0.19040 0.36124 - 0.097 142 0.3445 1 - 0.080437
2 0.36598 - 

- 0.19101 0.36137 - 0.097651 0.34755 - 0.081660

3 0 . 3 6 6 0 0  - 0.19224 0.36 161 - 0.098586 0.35165 - 0.0826 19
4 0.36603 - 0.19386 0.36190 - 0.099683 0.35519 - 0.084542
5 0.36605 - 0.19505 0.36211 - 0.010045 0.35709 - 0.086014

6 0.36526 - 0.15496 0.36101 - 0.096155 0.34431 - 0.080356

11 0.36415 - 0.12374 0.36055 - 0.094110 0.34397 - 0.080201

16 0.36290 - 0.10556 0.35999 - 0 .091909 0.34358 - 0.079991
21 0.36199 - 0.098157 0.3596 1 - 0.090318 0.34331 - 0 .079821

y

2l~ 
•

I 11
16
1 2  3 4  5

• .—~~ ——.—.— — x 

~~~~~ •--•~~~~
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Similar results are presented in Figs . 4.2 and 4.3 for a two-layer ,

cross—ply (00/900), rectangular plate of aramid—rubber under sinusoidal

l oading. Note from Fig. 4.2 that the neutral-surface location , Z~ is

vi rtually unchanged for aspect ratios greater than 1 , while the neutral -

surface location , Zy~ increases proportional to the aspect ratio. It

should also be noted that the neutral surfaces do not coincide in the cross-

ply case for b/a = 1.

Figure 4.4 shows the influence of the aspect ratio , and side-to—thick-

ness ratio on the transverse defl ection for the single— layer and two-layer

cross-ply plates discussed above. The effect of thickness on the defl ec-

tion is more pronounced than the effect of the aspect ratio.

5. SUMMARY AND CONCLUSIONS

A penalty fini te-element formulation of the equations governing the

small defl ection elastic behavior of thin plates l aminated of anisotropic

bimodulus materials is presented . The resulting finite element model is

valid for the analysis of thin and moderately thick plates . Single -layer

and two—layer cross-ply, simply—supported thin rectangular plates subjected

to sinusoida lly distributed normal pressure and uniformly distributed norma l

pressure are analyzed . In the case of sinusoida l loading, the present

finite-element solutions agree very closely wi th the exact closed-fo rm solu-

tions . To illustrate the validi ty of the present finite element model for thick plates

numerica lresults are presented for side—to— thickness ratio of 10 for single—

l ayer and two—layer cross-ply rectangular plates.
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